Uniform stabilization and exact controllability for hyperbolic systems with discontinuous coefficients.
Gomez, Felix P.Quispe, Kapitonov, Boris V. (2007)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Gomez, Felix P.Quispe, Kapitonov, Boris V. (2007)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Cannarsa, Piermarco, Fragnelli, Genni (2006)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Ceballos V., Juan Carlos, Pavez F., Ricardo, Villagrán, Octavio Paulo Vera (2005)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Chalishajar, Dimplekumar N., George, Raju K. (2006)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Leiva, Hugo (2005)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Adames, N., Leiva, H., Sánchez, J. (2008)
Divulgaciones Matemáticas
Similarity:
Brandao, Adilson J.V., Fernandez-Cara, Enrique, Magalhaes, Paulo M.D., Rojas-Medar, Marko Antonio (2008)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Cannarsa, Piermarco, de Teresa, Luz (2009)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Lions, J.L. (1994)
Georgian Mathematical Journal
Similarity:
Atmania, Rahima, Mazouzi, Said (2005)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Ainseba, Bedr'Eddine, Anita, Sebastian (2004)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Oumar Traore (2010)
Annales mathématiques Blaise Pascal
Similarity:
In this paper we study a linear population dynamics model. In this model, the birth process is described by a nonlocal term and the initial distribution is unknown. The aim of this paper is to use a controllability result of the adjoint system for the computation of the density of individuals at some time .