The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Counting the number of elements in the mutation classes of A n -quivers.”

Pancyclicity when each Cycle Must Pass Exactly k Hamilton Cycle Chords

Fatima Affif Chaouche, Carrie G. Rutherford, Robin W. Whitty (2015)

Discussiones Mathematicae Graph Theory

Similarity:

It is known that Θ(log n) chords must be added to an n-cycle to produce a pancyclic graph; for vertex pancyclicity, where every vertex belongs to a cycle of every length, Θ(n) chords are required. A possibly ‘intermediate’ variation is the following: given k, 1 ≤ k ≤ n, how many chords must be added to ensure that there exist cycles of every possible length each of which passes exactly k chords? For fixed k, we establish a lower bound of ∩(n1/k) on the growth rate.