A note on the non-colorability threshold of a random graph.
Kaporis, Alexis C., Kirousis, Lefteris M., Stamatiou, Yannis C. (2000)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Kaporis, Alexis C., Kirousis, Lefteris M., Stamatiou, Yannis C. (2000)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Subramanian, C.R. (2003)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Clark, Lane (2002)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Coja-Oghlan, Amin, Frieze, Alan (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Sudakov, Benny (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Peng, Yuejian, Rödl, Vojtech, Ruciński, Andrzej (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Coja-Oghlan, Amin, Lanka, André (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Nikiforov, Vladimir (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Francis Comets, Serguei Popov (2004)
ESAIM: Probability and Statistics
Similarity:
We consider the continuous time, one-dimensional random walk in random environment in Sinai’s regime. We show that the probability for the particle to be, at time and in a typical environment, at a distance larger than () from its initial position, is .
Gantert, Nina, Popov, Serguei, Vachkovskaia, Marina (2009)
Electronic Journal of Probability [electronic only]
Similarity:
Achlioptas, Dimitris, Molloy, Michael (1999)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Sburlati, G. (2002)
Rendiconti del Seminario Matematico
Similarity:
Bernáth, Attila, Bruhn, Henning (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity: