Noncommutative analogs of symmetric polynomials
Maciej Burnecki (1993)
Colloquium Mathematicae
Similarity:
Maciej Burnecki (1993)
Colloquium Mathematicae
Similarity:
Dunkl, Charles F. (2010)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Leclerc, Bernard (1998)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Désarménien, J., Leclerc, B., Thibon, J.-Y. (1994)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Dunkl, Charles F. (2008)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Winkel, Rudolf (1997)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Kirillov, Anatol N. (2007)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Morse, Jennifer (1998)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Winkel, Rudolf (1996)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Hassan, G.F. (2006)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Viswanath, Sankaran (2007)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1996)
Banach Center Publications
Similarity:
Classes dual to Schubert cycles constitute a basis on the cohomology ring of the flag manifold F, self-adjoint up to indexation with respect to the intersection form. Here, we study the bilinear form (X,Y) :=〈X·Y, c(F)〉 where X,Y are cocycles, c(F) is the total Chern class of F and〈,〉 is the intersection form. This form is related to a twisted action of the symmetric group of the cohomology ring, and to the degenerate affine Hecke algebra. We give a distinguished basis for this form,...