Displaying similar documents to “Fractional Poisson processes and related planar random motions.”

Moment measures of heavy-tailed renewal point processes: asymptotics and applications

Clément Dombry, Ingemar Kaj (2013)

ESAIM: Probability and Statistics

Similarity:

We study higher-order moment measures of heavy-tailed renewal models, including a renewal point process with heavy-tailed inter-renewal distribution and its continuous analog, the occupation measure of a heavy-tailed Lévy subordinator. Our results reveal that the asymptotic structure of such moment measures are given by explicit power-law density functions. The same power-law densities appear naturally as cumulant measures of certain Poisson and Gaussian stochastic integrals. This correspondence...

Renewal Processes of Mittag-Leffler and Wright Type

Mainardi, Francesco, Gorenflo, Rudolf, Vivoli, Alessandro (2005)

Fractional Calculus and Applied Analysis

Similarity:

2000 MSC: 26A33, 33E12, 33E20, 44A10, 44A35, 60G50, 60J05, 60K05. After sketching the basic principles of renewal theory we discuss the classical Poisson process and offer two other processes, namely the renewal process of Mittag-Leffler type and the renewal process of Wright type, so named by us because special functions of Mittag-Leffler and of Wright type appear in the definition of the relevant waiting times. We compare these three processes with each other, furthermore...

Fractional Fokker-Planck-Kolmogorov type Equations and their Associated Stochastic Differential Equations

Hahn, Marjorie, Umarov, Sabir (2011)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf Gorenflo There is a well-known relationship between the Itô stochastic differential equations (SDEs) and the associated partial differential equations called Fokker-Planck equations, also called Kolmogorov equations. The Brownian motion plays the role of the basic driving process for SDEs. This paper provides fractional generalizations of the triple relationship between the driving...

On Fractional Helmholtz Equations

Samuel, M., Thomas, Anitha (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 33E12, 33C60, 35R11 In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.