Harmonic Functions on Riemannian Manifolds
Petros Bozonis (1972)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Similarity:
Petros Bozonis (1972)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Similarity:
Erlend Grong (2022)
Archivum Mathematicum
Similarity:
These notes give an introduction to the equivalence problem of sub-Riemannian manifolds. We first introduce preliminaries in terms of connections, frame bundles and sub-Riemannian geometry. Then we arrive to the main aim of these notes, which is to give the description of the canonical grading and connection existing on sub-Riemann manifolds with constant symbol. These structures are exactly what is needed in order to determine if two manifolds are isometric. We give three concrete examples,...
Katsumi Nomizu, Kentaro Yano (1967)
Mathematische Zeitschrift
Similarity:
D. Motreanu (1987)
Colloquium Mathematicae
Similarity:
Oldrich Kowalski (1974)
Mathematische Zeitschrift
Similarity:
Andreas Arvanitoyeorgos, Christina C. Beneki, M. Hasan Shahid, Vassilis J. Papantoniou (2000)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Similarity:
M. Glasner, R. Katz, M. Nakai (1971)
Mathematische Zeitschrift
Similarity:
Obăndeanu, V., Vernic, C. (1997)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
D.K. Datta, M.K. Singal (1964)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Michael Eastwood, Katharina Neusser (2016)
Archivum Mathematicum
Similarity:
We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.
Yuri E. Gliklikh, Andrei V. Obukhovski (2004)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Similarity:
We investigate velocity hodograph inclusions for the case of right-hand sides satisfying upper Carathéodory conditions. As an application we obtain an existence theorem for a boundary value problem for second-order differential inclusions on complete Riemannian manifolds with Carathéodory right-hand sides.