Displaying similar documents to “Groups of Isometric Transformations, Basic Connections and Splitting results on Riemannian Manifolds”

Curvature and the equivalence problem in sub-Riemannian geometry

Erlend Grong (2022)

Archivum Mathematicum

Similarity:

These notes give an introduction to the equivalence problem of sub-Riemannian manifolds. We first introduce preliminaries in terms of connections, frame bundles and sub-Riemannian geometry. Then we arrive to the main aim of these notes, which is to give the description of the canonical grading and connection existing on sub-Riemann manifolds with constant symbol. These structures are exactly what is needed in order to determine if two manifolds are isometric. We give three concrete examples,...

Tubes and the Geometry of the Kahler Manifolds

Andreas Arvanitoyeorgos, Christina C. Beneki, M. Hasan Shahid, Vassilis J. Papantoniou (2000)

Δελτίο της Ελληνικής Μαθηματικής Εταιρίας

Similarity:

A canonical connection on sub-Riemannian contact manifolds

Michael Eastwood, Katharina Neusser (2016)

Archivum Mathematicum

Similarity:

We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.

On differential inclusions of velocity hodograph type with Carathéodory conditions on Riemannian manifolds

Yuri E. Gliklikh, Andrei V. Obukhovski (2004)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We investigate velocity hodograph inclusions for the case of right-hand sides satisfying upper Carathéodory conditions. As an application we obtain an existence theorem for a boundary value problem for second-order differential inclusions on complete Riemannian manifolds with Carathéodory right-hand sides.