The genera representing a positive integer
Pierre Kaplan, Kenneth S. Williams (2002)
Acta Arithmetica
Similarity:
Pierre Kaplan, Kenneth S. Williams (2002)
Acta Arithmetica
Similarity:
B. Birch (1958)
Acta Arithmetica
Similarity:
Alexander E. Patkowski (2011)
Colloquium Mathematicae
Similarity:
We provide a new approach to establishing certain q-series identities that were proved by Andrews, and show how to prove further identities using conjugate Bailey pairs. Some relations between some q-series and ternary quadratic forms are established.
A. Schinzel (2013)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
Peters, Meinhard (2004)
Experimental Mathematics
Similarity:
Zhi-Hong Sun (2011)
Acta Arithmetica
Similarity:
A. Schinzel (2013)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The paper completes an incomplete proof given by L. J. Mordell in 1930 of the following theorem: every positive definite classical binary quadratic form is the sum of five squares of linear forms with integral coefficients.
Kenneth S. Williams (2014)
Acta Arithmetica
Similarity:
Under the assumption that the ternary form x² + 2y² + 5z² + xz represents all odd positive integers, we prove that a ternary quadratic form ax² + by² + cz² (a,b,c ∈ ℕ) represents all positive integers n ≡ 4(mod 8) if and only if it represents the eight integers 4,12,20,28,52,60,140 and 308.
Arnold K. Pizer (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Izhboldin, Oleg T. (1998)
Documenta Mathematica
Similarity:
Byeong-Kweon Oh (2011)
Acta Arithmetica
Similarity:
Svetozar Kurepa (1987)
Publications de l'Institut Mathématique
Similarity:
Laghribi, Ahmed (1999)
Documenta Mathematica
Similarity:
Irving Kaplansky (1968)
Studia Mathematica
Similarity: