Displaying similar documents to “Moderate-density CT burst error-locating linear codes”

Improving the Watermarking Process with Usage of Block Error-Correcting Codes

Berger, Thierry, Todorov, Todor (2008)

Serdica Journal of Computing

Similarity:

The emergence of digital imaging and of digital networks has made duplication of original artwork easier. Watermarking techniques, also referred to as digital signature, sign images by introducing changes that are imperceptible to the human eye but easily recoverable by a computer program. Usage of error correcting codes is one of the good choices in order to correct possible errors when extracting the signature. In this paper, we present a scheme of error correction based on a combination...

On the Error-Correcting Performance of some Binary and Ternary Linear Codes

Baicheva, Tsonka (2007)

Serdica Journal of Computing

Similarity:

In this work, we determine the coset weight spectra of all binary cyclic codes of lengths up to 33, ternary cyclic and negacyclic codes of lengths up to 20 and of some binary linear codes of lengths up to 33 which are distance-optimal, by using some of the algebraic properties of the codes and a computer assisted search. Having these weight spectra the monotony of the function of the undetected error probability after t-error correction P(t)ue (C,p) could be checked with any precision...

Creation of unequal error protection codes for two groups of symbols

Eugeniusz Kuriata (2008)

International Journal of Applied Mathematics and Computer Science

Similarity:

This article presents problems of unequal information importance. The paper discusses constructive methods of code generation, and a constructive method of generating asymptotic UEP codes is built. An analog model of Hamming's upper bound and Hilbert's lower bound for asymptotic UEP codes is determined.

Ternary constant weight codes.

Östergård, Patric R.J., Svanström, Mattias (2002)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

On Multiple Deletion Codes

Landjev, Ivan, Haralambiev, Kristiyan (2007)

Serdica Journal of Computing

Similarity:

In 1965 Levenshtein introduced the deletion correcting codes and found an asymptotically optimal family of 1-deletion correcting codes. During the years there has been a little or no research on t-deletion correcting codes for larger values of t. In this paper, we consider the problem of finding the maximal cardinality L2(n;t) of a binary t-deletion correcting code of length n. We construct an infinite family of binary t-deletion correcting codes. By computer search, we construct t-deletion...