Compact Riemannian manifolds with homogeneous geodesics.
Alekseevsky, Dmitrii V., Nikonorov, Yurii G. (2009)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Alekseevsky, Dmitrii V., Nikonorov, Yurii G. (2009)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Takushiro Ochiai, Tsunero Takahashi (1976)
Mathematische Annalen
Similarity:
Hajime Urakawa (1986)
Compositio Mathematica
Similarity:
Aleksej Tralle (1989)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Ann Stehney, Richard Millman (1980)
Fundamenta Mathematicae
Similarity:
Dimitri V. Alekseevsky, Andreas Arvanitoyeorgos (2002)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A geodesic of a homogeneous Riemannian manifold is called homogeneous if it is an orbit of an one-parameter subgroup of . In the case when is a naturally reductive space, that is the -invariant metric is defined by some non degenerate biinvariant symmetric bilinear form , all geodesics of are homogeneous. We consider the case when is a flag manifold, i.eȧn adjoint orbit of a compact semisimple Lie group , and we give a simple necessary condition that admits a non-naturally...