Displaying similar documents to “Group actions on rational homology spheres”

Cyclic branched coverings and homology 3-spheres with large group actions

Bruno P. Zimmermann (2004)

Fundamenta Mathematicae

Similarity:

We show that, if the covering involution of a 3-manifold M occurring as the 2-fold branched covering of a knot in the 3-sphere is contained in a finite nonabelian simple group G of diffeomorphisms of M, then M is a homology 3-sphere and G isomorphic to the alternating or dodecahedral group 𝔸₅ ≅ PSL(2,5). An example of such a 3-manifold is the spherical Poincaré sphere. We construct hyperbolic analogues of the Poincaré sphere. We also give examples of hyperbolic ℤ₂-homology 3-spheres...

Cyclic homology and equivariant theories

Jean-Luc Brylinski (1987)

Annales de l'institut Fourier

Similarity:

In this article, we present two possible extensions of the classical theory of equivariant cohomology. The first, due to P. Baum, R. MacPherson and the author, is called the “delocalized theory". We attempt to present it in very concrete form for a circle action on a smooth manifold. The second is the cyclic homology of the crossed- product algebra of the algebra of smooth functions on a manifold, by the convolution algebra of smooth functions on a Lie group, when such Lie group act...

Transverse Homology Groups

S. Dragotti, G. Magro, L. Parlato (2006)

Bollettino dell'Unione Matematica Italiana

Similarity:

We give, here, a geometric treatment of intersection homology theory.

Relationship among various Vietoris-type and microsimplicial homology theories

Takuma Imamura (2021)

Archivum Mathematicum

Similarity:

In this paper, we clarify the relationship among the Vietoris-type homology theories and the microsimplicial homology theories, where the latter are nonstandard homology theories defined by M.C. McCord (for topological spaces), T. Korppi (for completely regular topological spaces) and the author (for uniform spaces). We show that McCord’s and our homology are isomorphic for all compact uniform spaces and that Korppi’s and our homology are isomorphic for all fine uniform spaces. Our homology...