Displaying similar documents to “On sums of range symmetric matrices in Minkowski space.”

On isometries of the symmetric space P₁(3,ℝ)

Gašper Zadnik (2014)

Colloquium Mathematicae

Similarity:

We classify the isometries in the non-identity component of the whole isometry group of the symmetric space of positive 3 × 3 matrices of determinant 1: we determine the translation lengths, minimal spaces and fixed points at infinity.

Construction of symmetric Hadamard matrices of order 4v for v = 47, 73, 113

N. A. Balonin, D. Ž. Ðokovic, D. A. Karbovskiy (2018)

Special Matrices

Similarity:

We continue our systematic search for symmetric Hadamard matrices based on the so called propus construction. In a previous paper this search covered the orders 4v with odd v ≤ 41. In this paper we cover the cases v = 43, 45, 47, 49, 51. The odd integers v < 120 for which no symmetric Hadamard matrices of order 4v are known are the following: 47, 59, 65, 67, 73, 81, 89, 93, 101, 103, 107, 109, 113, 119. By using the propus construction, we found several symmetric Hadamard matrices...

On the symmetric continuity

Jaskuła, Janusz, Szkopińska, Bożena (2015-12-15T14:49:03Z)

Acta Universitatis Lodziensis. Folia Mathematica

Similarity:

Symmetric Hadamard matrices of order 116 and 172 exist

Olivia Di Matteo, Dragomir Ž. Ðoković, Ilias S. Kotsireas (2015)

Special Matrices

Similarity:

We construct new symmetric Hadamard matrices of orders 92, 116, and 172. While the existence of those of order 92 was known since 1978, the orders 116 and 172 are new. Our construction is based on a recent new combinatorial array (GP array) discovered by N. A. Balonin and J. Seberry. For order 116 we used an adaptation of an algorithm for parallel collision search. The adaptation pertains to the modification of some aspects of the algorithm to make it suitable to solve a 3-way matching...

E-symmetric numbers

Gang Yu (2005)

Colloquium Mathematicae

Similarity:

A positive integer n is called E-symmetric if there exists a positive integer m such that |m-n| = (ϕ(m),ϕ(n)), and n is called E-asymmetric if it is not E-symmetric. We show that there are infinitely many E-symmetric and E-asymmetric primes.