Displaying similar documents to “Foreword. Low Mach number flows conference”

A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil

François Beux, Maria-Vittoria Salvetti, Alexey Ignatyev, Ding Li, Charles Merkle, Edoardo Sinibaldi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The results of a workshop concerning the numerical simulation of the liquid flow around a hydrofoil in non-cavitating and cavitating conditions are presented. This workshop was part of the conference “Mathematical and Numerical aspects of Low Mach Number Flows” (2004) and was aimed to investigate the capabilities of different compressible flow solvers for the low Mach number regime and for flows in which incompressible and supersonic regions are simultaneously present. Different physical...

Modelling of Natural Convection Flows with Large Temperature Differences: A Benchmark Problem for Low Mach Number Solvers. Part 2. Contributions to the June 2004 conference

Henri Paillère, Patrick Le Quéré, Catherine Weisman, Jan Vierendeels, Erik Dick, Malte Braack, Frédéric Dabbene, Alberto Beccantini, Etienne Studer, Thibaud Kloczko, Christophe Corre, Vincent Heuveline, Masoud Darbandi, Seyed Farid Hosseinizadeh (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In the second part of the paper, we compare the solutions produced in the framework of the conference “Mathematical and numerical aspects of low Mach number flows” organized by INRIA and MAB in Porquerolles, June 2004, to the reference solutions described in Part 1. We make some recommendations on how to produce good quality solutions, and list a number of pitfalls to be avoided.

Aerodynamic Computations Using a Finite Volume Method with an HLLC Numerical Flux Function

L. Remaki, O. Hassan, K. Morgan (2011)

Mathematical Modelling of Natural Phenomena

Similarity:

A finite volume method for the simulation of compressible aerodynamic flows is described. Stabilisation and shock capturing is achieved by the use of an HLLC consistent numerical flux function, with acoustic wave improvement. The method is implemented on an unstructured hybrid mesh in three dimensions. A solution of higher order accuracy is obtained by reconstruction, using an iteratively corrected least squares process, and by a new...