Displaying similar documents to “Optimal control and numerical adaptivity for advection–diffusion equations”

Optimal control and numerical adaptivity for advection–diffusion equations

Luca Dede', Alfio Quarteroni (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the Lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from...

Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space

Pedro Merino, Fredi Tröltzsch, Boris Vexler (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The finite element approximation of optimal control problems for semilinear elliptic partial differential equation is considered, where the control belongs to a finite-dimensional set and state constraints are given in finitely many points of the domain. Under the standard linear independency condition on the active gradients and a strong second-order sufficient optimality condition, optimal error estimates are derived for locally optimal controls.