Displaying similar documents to “Homogenization and diffusion asymptotics of the linear Boltzmann equation”

Upper bounds for a class of energies containing a non-local term

Arkady Poliakovsky (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we construct upper bounds for families of functionals of the form E ε ( φ ) : = Ω ε | φ | 2 + 1 ε W ( φ ) d x + 1 ε N | H ¯ F ( φ ) | 2 d x where Δ H ¯ u = div { χ Ω u}. Particular cases of such functionals arise in Micromagnetics. We also use our technique to construct upper bounds for functionals that appear in a variational formulation of the method of vanishing viscosity for conservation laws.

Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set

Luciano Carbone, Doina Cioranescu, Riccardo De Arcangelis, Antonio Gaudiello (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The paper is a continuation of a previous work of the same authors dealing with homogenization processes for some energies of integral type arising in the modeling of rubber-like elastomers. The previous paper took into account the general case of the homogenization of energies in presence of pointwise oscillating constraints on the admissible deformations. In the present paper homogenization processes are treated in the particular case of fixed constraints set, in which minimal coerciveness...

A global differentiability result for solutions of nonlinear elliptic problems with controlled growths

Luisa Fattorusso (2008)

Czechoslovak Mathematical Journal

Similarity:

Let Ω be a bounded open subset of n , n > 2 . In Ω we deduce the global differentiability result u H 2 ( Ω , N ) for the solutions u H 1 ( Ω , n ) of the Dirichlet problem u - g H 0 1 ( Ω , N ) , - i D i a i ( x , u , D u ) = B 0 ( x , u , D u ) with controlled growth and nonlinearity q = 2 . The result was obtained by first extending the interior differentiability result near the boundary and then proving the global differentiability result making use of a covering procedure.