Displaying similar documents to “Object oriented design philosophy for scientific computing”

Concepts—An object-oriented software package for partial differential equations

Philipp Frauenfelder, Christian Lage (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Object oriented design has proven itself as a powerful tool in the field of scientific computing. Several software packages, libraries and toolkits exist, in particular in the FEM arena that follow this design methodology providing extensible, reusable, and flexible software while staying competitive to traditionally designed point tools in terms of efficiency. However, the common approach to identify classes is to turn data structures and algorithms of traditional implementations into...

FER/SubDomain : an integrated environment for finite element analysis using object-oriented approach

Zhi-Qiang Feng, Jean-Michel Cros (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Development of user-friendly and flexible scientific programs is a key to their usage, extension and maintenance. This paper presents an OOP (Object-Oriented Programming) approach for design of finite element analysis programs. General organization of the developed software system, called FER/SubDomain, is given which includes the solver and the pre/post processors with a friendly GUI (Graphical User Interfaces). A case study with graphical representations illustrates some functionalities...

Hybrid parallelization of an adaptive finite element code

Axel Voigt, Thomas Witkowski (2010)

Kybernetika

Similarity:

We present a hybrid OpenMP/MPI parallelization of the finite element method that is suitable to make use of modern high performance computers. These are usually built from a large bulk of multi-core systems connected by a fast network. Our parallelization method is based firstly on domain decomposition to divide the large problem into small chunks. Each of them is then solved on a multi-core system using parallel assembling, solution and error estimation. To make domain decomposition...

A new finite element approach for problems containing small geometric details

Wolfgang Hackbusch, Stefan A. Sauter (1998)

Archivum Mathematicum

Similarity:

In this paper a new finite element approach is presented which allows the discretization of PDEs on domains containing small micro-structures with extremely few degrees of freedom. The applications of these so-called Composite Finite Elements are two-fold. They allow the efficient use of multi-grid methods to problems on complicated domains where, otherwise, it is not possible to obtain very coarse discretizations with standard finite elements. Furthermore, they provide a tool for discrete...