Displaying similar documents to “A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand”

Structure of approximate solutions of variational problems with extended-valued convex integrands

Alexander J. Zaslavski (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this work we study the structure of approximate solutions of autonomous variational problems with a lower semicontinuous strictly convex integrand f : R n × R n R 1 { } , where R n is the n -dimensional euclidean space. We obtain a full description of the structure of the approximate solutions which is independent of the length of the interval, for all sufficiently large intervals.

A note on propagation of singularities of semiconcave functions of two variables

Luděk Zajíček (2010)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

P. Albano and P. Cannarsa proved in 1999 that, under some applicable conditions, singularities of semiconcave functions in n propagate along Lipschitz arcs. Further regularity properties of these arcs were proved by P. Cannarsa and Y. Yu in 2009. We prove that, for n = 2 , these arcs are very regular: they can be found in the form (in a suitable Cartesian coordinate system) ψ ( x ) = ( x , y 1 ( x ) - y 2 ( x ) ) , x [ 0 , α ] , where y 1 , y 2 are convex and Lipschitz on [ 0 , α ] . In other words: singularities propagate along arcs with finite turn. ...

Vector integral equations with discontinuous right-hand side

Filippo Cammaroto, Paolo Cubiotti (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We deal with the integral equation u ( t ) = f ( I g ( t , z ) u ( z ) d z ) , with t I = [ 0 , 1 ] , f : 𝐑 n 𝐑 n and g : I × I [ 0 , + [ . We prove an existence theorem for solutions u L ( I , 𝐑 n ) where the function f is not assumed to be continuous, extending a result previously obtained for the case n = 1 .

Local Lipschitz continuity of the stop operator

Wolfgang Desch (1998)

Applications of Mathematics

Similarity:

On a closed convex set Z in N with sufficiently smooth ( 𝒲 2 , ) boundary, the stop operator is locally Lipschitz continuous from 𝐖 1 , 1 ( [ 0 , T ] , N ) × Z into 𝐖 1 , 1 ( [ 0 , T ] , N ) . The smoothness of the boundary is essential: A counterexample shows that 𝒞 1 -smoothness is not sufficient.

A remark on the local Lipschitz continuity of vector hysteresis operators

Pavel Krejčí (2001)

Applications of Mathematics

Similarity:

It is known that the vector stop operator with a convex closed characteristic Z of class C 1 is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping n is Lipschitz continuous on the boundary Z of Z . We prove that in the regular case, this condition is also necessary.