The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Optimal networks for mass transportation problems”

Asymptotic behavior of solutions of nonlinear difference equations

Janusz Migda (2004)

Mathematica Bohemica

Similarity:

The nonlinear difference equation x n + 1 - x n = a n ϕ n ( x σ ( n ) ) + b n , ( E ) where ( a n ) , ( b n ) are real sequences, ϕ n , ( σ ( n ) ) is a sequence of integers and lim n σ ( n ) = , is investigated. Sufficient conditions for the existence of solutions of this equation asymptotically equivalent to the solutions of the equation y n + 1 - y n = b n are given. Sufficient conditions under which for every real constant there exists a solution of equation () convergent to this constant are also obtained.

Synchronized traffic plans and stability of optima

Marc Bernot, Alessio Figalli (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The irrigation problem is the problem of finding an efficient way to transport a measure μ onto a measure μ. By efficient, we mean that a structure that achieves the transport (which, following [Bernot, Caselles and Morel, (2005) 417–451], we call traffic plan) is better if it carries the mass in a grouped way rather than in a separate way. This is formalized by considering costs functionals that favorize this property. The aim of this paper is to introduce a dynamical...

Long-term planning versus short-term planning in the asymptotical location problem

Alessio Brancolini, Giuseppe Buttazzo, Filippo Santambrogio, Eugene Stepanov (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Given the probability measure ν over the given region Ω n , we consider the optimal location of a set Σ composed by n points in Ω in order to minimize the average distance Σ Ω dist ( x , Σ ) d ν (the classical optimal facility location problem). The paper compares two strategies to find optimal configurations: the long-term one which consists in placing all n points at once in an optimal position, and the short-term one which consists in placing the points one by one adding at each step at most one point and...