The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Generalized Newton methods for the 2D-Signorini contact problem with friction in function space”

Generalized Newton methods for the 2D-Signorini contact problem with friction in function space

Karl Kunisch, Georg Stadler (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The 2D-Signorini contact problem with Tresca and Coulomb friction is discussed in infinite-dimensional Hilbert spaces. First, the problem with given friction (Tresca friction) is considered. It leads to a constraint non-differentiable minimization problem. By means of the Fenchel duality theorem this problem can be transformed into a constrained minimization involving a smooth functional. A regularization technique for the dual problem motivated by augmented Lagrangians allows...

Semi–smooth Newton methods for variational inequalities of the first kind

Kazufumi Ito, Karl Kunisch (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Semi–smooth Newton methods are analyzed for a class of variational inequalities in infinite dimensions. It is shown that they are equivalent to certain active set strategies. Global and local super-linear convergence are proved. To overcome the phenomenon of finite speed of propagation of discretized problems a penalty version is used as the basis for a continuation procedure to speed up convergence. The choice of the penalty parameter can be made on the basis of an L estimate for the...