The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Estimation of anisotropic gaussian fields through Radon transform”

Estimation of anisotropic Gaussian fields through Radon transform

Hermine Biermé, Frédéric Richard (2007)

ESAIM: Probability and Statistics

Similarity:

We estimate the anisotropic index of an anisotropic fractional Brownian field. For all directions, we give a convergent estimator of the value of the anisotropic index in this direction, based on generalized quadratic variations. We also prove a central limit theorem. First we present a result of identification that relies on the asymptotic behavior of the spectral density of a process. Then, we define Radon transforms of the anisotropic fractional Brownian field and prove that these...

Invariance principle, multifractional gaussian processes and long-range dependence

Serge Cohen, Renaud Marty (2008)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

This paper is devoted to establish an invariance principle where the limit process is a multifractional gaussian process with a multifractional function which takes its values in (1/2, 1). Some properties, such as regularity and local self-similarity of this process are studied. Moreover the limit process is compared to the multifractional brownian motion.