Displaying similar documents to “A domain decomposition analysis for a two-scale linear transport problem”

Coupling of transport and diffusion models in linear transport theory

Guillaume Bal, Yvon Maday (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper is concerned with the coupling of two models for the propagation of particles in scattering media. The first model is a linear transport equation of Boltzmann type posed in the phase space (position and velocity). It accurately describes the physics but is very expensive to solve. The second model is a diffusion equation posed in the physical space. It is only valid in areas of high scattering, weak absorption, and smooth physical coefficients, but its numerical solution is...

A Domain Decomposition Analysis for a Two-Scale Linear Transport Problem

François Golse, Shi Jin, C. David Levermore (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids...

Computation of the demagnetizing potential in micromagnetics using a coupled finite and infinite elements method

François Alouges (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper is devoted to the practical computation of the magnetic potential induced by a distribution of magnetization in the theory of micromagnetics. The problem turns out to be a coupling of an interior and an exterior problem. The aim of this work is to describe a complete method that mixes the approaches of Ying [12] and Goldstein [6] which consists in constructing a mesh for the exterior domain composed of homothetic layers. It has the advantage of being well suited for catching...