Displaying similar documents to “Convergence of a high-order compact finite difference scheme for a nonlinear Black–Scholes equation”

Convergence of a high-order compact finite difference scheme for a nonlinear Black–Scholes equation

Bertram Düring, Michel Fournié, Ansgar Jüngel (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

A high-order compact finite difference scheme for a fully nonlinear parabolic differential equation is analyzed. The equation arises in the modeling of option prices in financial markets with transaction costs. It is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. The proof is based on a careful study of the discretization matrices and on an abstract convergence result due to Barles and Souganides. ...

Nonstandard Finite Difference Schemes with Application to Finance: Option Pricing

Milev, Mariyan, Tagliani, Aldo (2010)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 65M06, 65M12. The paper is devoted to pricing options characterized by discontinuities in the initial conditions of the respective Black-Scholes partial differential equation. Finite difference schemes are examined to highlight how discontinuities can generate numerical drawbacks such as spurious oscillations. We analyze the drawbacks of the Crank-Nicolson scheme that is most frequently used numerical method in Finance because of its...