The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On complexity and motion planning for co-rank one sub-riemannian metrics”

Projective Reeds-Shepp car on with quadratic cost

Ugo Boscain, Francesco Rossi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Fix two points x , x ¯ S 2 and two directions (without orientation) η , η ¯ of the velocities in these points. In this paper we are interested to the problem of minimizing the cost J [ γ ] = 0 T γ ( t ) ( γ ˙ ( t ) , γ ˙ ( t ) ) + K γ ( t ) 2 γ ( t ) ( γ ˙ ( t ) , γ ˙ ( t ) ) d t along all smooth curves starting from x with direction η and ending in x ¯ with direction η ¯ . Here g is the standard Riemannian metric on S 2...

On natural metrics on tangent bundles of Riemannian manifolds

Mohamed Tahar Kadaoui Abbassi, Maâti Sarih (2005)

Archivum Mathematicum

Similarity:

There is a class of metrics on the tangent bundle T M of a Riemannian manifold ( M , g ) (oriented , or non-oriented, respectively), which are ’naturally constructed’ from the base metric g [Kow-Sek1]. We call them “ g -natural metrics" on T M . To our knowledge, the geometric properties of these general metrics have not been studied yet. In this paper, generalizing a process of Musso-Tricerri (cf. [Mus-Tri]) of finding Riemannian metrics on T M from some quadratic forms on O M × m to find metrics (not necessary...