On hereditary subdirectly irreducible graphs
Jiří Vinárek (1984)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Jiří Vinárek (1984)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Mohar, Bojan (1984)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Vinárek, Jiří
Similarity:
I.B. Lackovic, D.M. Cvetkovic (1976)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Lawrence Moss (1989)
Fundamenta Mathematicae
Similarity:
Petrović, Miroslav (1991)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Richard H. Hammack (2008)
Discussiones Mathematicae Graph Theory
Similarity:
Given graphs A, B and C for which A×C ≅ B×C, it is not generally true that A ≅ B. However, it is known that A×C ≅ B×C implies A ≅ B provided that C is non-bipartite, or that there are homomorphisms from A and B to C. This note proves an additional cancellation property. We show that if B and C are bipartite, then A×C ≅ B×C implies A ≅ B if and only if no component of B admits an involution that interchanges its partite sets.