Displaying similar documents to “Sets invariant under projections onto one dimensional subspaces”

Sets invariant under projections onto two dimensional subspaces

Simon Fitzpatrick, Bruce Calvert (1991)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The Blaschke–Kakutani result characterizes inner product spaces E , among normed spaces of dimension at least 3, by the property that for every 2 dimensional subspace F there is a norm 1 linear projection onto F . In this paper, we determine which closed neighborhoods B of zero in a real locally convex space E of dimension at least 3 have the property that for every 2 dimensional subspace F there is a continuous linear projection P onto F with P ( B ) B .

A finite multiplicity Helson-Lowdenslager-de Branges theorem

Sneh Lata, Meghna Mittal, Dinesh Singh (2010)

Studia Mathematica

Similarity:

We prove two theorems. The first theorem reduces to a scalar situation the well known vector-valued generalization of the Helson-Lowdenslager theorem that characterizes the invariant subspaces of the operator of multiplication by the coordinate function z on the vector-valued Lebesgue space L²(;ℂⁿ). Our approach allows us to prove an equivalent version of the vector-valued Helson-Lowdenslager theorem in a completely scalar setting, thereby eliminating the use of range functions and partial...

On closed sets with convex projections in Hilbert space

Stoyu Barov, Jan J. Dijkstra (2007)

Fundamenta Mathematicae

Similarity:

Let k be a fixed natural number. We show that if C is a closed and nonconvex set in Hilbert space such that the closures of the projections onto all k-hyperplanes (planes with codimension k) are convex and proper, then C must contain a closed copy of Hilbert space. In order to prove this result we introduce for convex closed sets B the set k ( B ) consisting of all points of B that are extremal with respect to projections onto k-hyperplanes. We prove that k ( B ) is precisely the intersection of...

Some characterization of locally nonconical convex sets

Witold Seredyński (2004)

Czechoslovak Mathematical Journal

Similarity:

A closed convex set Q in a local convex topological Hausdorff spaces X is called locally nonconical (LNC) if for every x , y Q there exists an open neighbourhood U of x such that ( U Q ) + 1 2 ( y - x ) Q . A set Q is local cylindric (LC) if for x , y Q , x y , z ( x , y ) there exists an open neighbourhood U of z such that U Q (equivalently: b d ( Q ) U ) is a union of open segments parallel to [ x , y ] . In this paper we prove that these two notions are equivalent. The properties LNC and LC were investigated in [3], where the implication L N C L C was proved in...

Minimal multi-convex projections

Grzegorz Lewicki, Michael Prophet (2007)

Studia Mathematica

Similarity:

We say that a function from X = C L [ 0 , 1 ] is k-convex (for k ≤ L) if its kth derivative is nonnegative. Let P denote a projection from X onto V = Πₙ ⊂ X, where Πₙ denotes the space of algebraic polynomials of degree less than or equal to n. If we want P to leave invariant the cone of k-convex functions (k ≤ n), we find that such a demand is impossible to fulfill for nearly every k. Indeed, only for k = n-1 and k = n does such a projection exist. So let us consider instead a more general “shape”...

A simple formula showing L¹ is a maximal overspace for two-dimensional real spaces

B. L. Chalmers, F. T. Metcalf (1992)

Annales Polonici Mathematici

Similarity:

It follows easily from a result of Lindenstrauss that, for any real twodimensional subspace v of L¹, the relative projection constant λ(v;L¹) of v equals its (absolute) projection constant λ ( v ) = s u p X λ ( v ; X ) . The purpose of this paper is to recapture this result by exhibiting a simple formula for a subspace V contained in L ( ν ) and isometric to v and a projection P from C ⊕ V onto V such that P = P , where P₁ is a minimal projection from L¹(ν) onto v. Specifically, if P = i = 1 2 U i v i , then P = i = 1 2 u i V i , where d V i = 2 v i d ν and d U i = - 2 u i d ν .

Structure of Rademacher subspaces in Cesàro type spaces

Sergey V. Astashkin, Lech Maligranda (2015)

Studia Mathematica

Similarity:

The structure of the closed linear span of the Rademacher functions in the Cesàro space C e s is investigated. It is shown that every infinite-dimensional subspace of either is isomorphic to l₂ and uncomplemented in C e s , or contains a subspace isomorphic to c₀ and complemented in . The situation is rather different in the p-convexification of C e s if 1 < p < ∞.