The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On ω 2 -saturated families”

On the cardinality of Hausdorff spaces and Pol-Šapirovskii technique

Alejandro Ramírez-Páramo (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we make use of the Pol-Šapirovskii technique to prove three cardinal inequalities. The first two results are due to Fedeli [2] and the third theorem of this paper is a common generalization to: (a) (Arhangel’skii [1]) If X is a T 1 space such that (i) L ( X ) t ( X ) κ , (ii) ψ ( X ) 2 κ , and (iii) for all A [ X ] 2 κ , A ¯ 2 κ , then | X | 2 κ ; and (b) (Fedeli [2]) If X is a T 2 -space then | X | 2 aql ( X ) t ( X ) ψ c ( X ) .

Maximal almost disjoint families of functions

Dilip Raghavan (2009)

Fundamenta Mathematicae

Similarity:

We study maximal almost disjoint (MAD) families of functions in ω ω that satisfy certain strong combinatorial properties. In particular, we study the notions of strongly and very MAD families of functions. We introduce and study a hierarchy of combinatorial properties lying between strong MADness and very MADness. Proving a conjecture of Brendle, we show that if c o v ( ) < , then there no very MAD families. We answer a question of Kastermans by constructing a strongly MAD family from = . Next, we...

Interpolation of κ -compactness and PCF

István Juhász, Zoltán Szentmiklóssy (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We call a topological space κ -compact if every subset of size κ has a complete accumulation point in it. Let Φ ( μ , κ , λ ) denote the following statement: μ < κ < λ = cf ( λ ) and there is { S ξ : ξ < λ } [ κ ] μ such that | { ξ : | S ξ A | = μ } | < λ whenever A [ κ ] < κ . We show that if Φ ( μ , κ , λ ) holds and the space X is both μ -compact and λ -compact then X is κ -compact as well. Moreover, from PCF theory we deduce Φ ( cf ( κ ) , κ , κ + ) for every singular cardinal κ . As a corollary we get that a linearly Lindelöf and ω -compact space is uncountably compact, that is κ -compact for all uncountable cardinals...