The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Relative block semigroups and their arithmetical applications”

The asymptotic behaviour of the counting functions of Ω-sets in arithmetical semigroups

Maciej Radziejewski (2014)

Acta Arithmetica

Similarity:

We consider an axiomatically-defined class of arithmetical semigroups that we call simple L-semigroups. This class includes all generalized Hilbert semigroups, in particular the semigroup of non-zero integers in any algebraic number field. We show, for all positive integers k, that the counting function of the set of elements with at most k distinct factorization lengths in such a semigroup has oscillations of logarithmic frequency and size x ( l o g x ) - M for some M>0. More generally, we show...