The structure of initial completions
J. Adámek, H. Herrlich, G. E. Strecker (1979)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
J. Adámek, H. Herrlich, G. E. Strecker (1979)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Jiří Adámek, Horst Herrlich, George E. Strecker (1979)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
J. Adámek, V. Koubek (1983)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
G. C. L. Brummer, E. Giuli, H. Herrlich (1992)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Marco Riccardi (2015)
Formalized Mathematics
Similarity:
The main purpose of this article is to introduce the categorical concept of pullback in Mizar. In the first part of this article we redefine homsets, monomorphisms, epimorpshisms and isomorphisms [7] within a free-object category [1] and it is shown there that ordinal numbers can be considered as categories. Then the pullback is introduced in terms of its universal property and the Pullback Lemma is formalized [15]. In the last part of the article we formalize the pullback of functors...
Palm, Thorsten (2009)
Theory and Applications of Categories [electronic only]
Similarity: