Displaying similar documents to “A parallelogram configuration condition in nets”

Finite canonization

Saharon Shelah (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The canonization theorem says that for given m , n for some m * (the first one is called E R ( n ; m ) ) we have for every function f with domain [ 1 , , m * ] n , for some A [ 1 , , m * ] m , the question of when the equality f ( i 1 , , i n ) = f ( j 1 , , j n ) (where i 1 < < i n and j 1 < j n are from A ) holds has the simplest answer: for some v { 1 , , n } the equality holds iff v i = j . We improve the bound on E R ( n , m ) so that fixing n the number of exponentiation needed to calculate E R ( n , m ) is best possible.

Explicit form for the discrete logarithm over the field GF ( p , k )

Gerasimos C. Meletiou (1993)

Archivum Mathematicum

Similarity:

For a generator of the multiplicative group of the field G F ( p , k ) , the discrete logarithm of an element b of the field to the base a , b 0 is that integer z : 1 z p k - 1 , b = a z . The p -ary digits which represent z can be described with extremely simple polynomial forms.