The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Analytic functions are -density continuous”

The family of I -density type topologies

Grazyna Horbaczewska (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We investigate a family of topologies introduced similarly as the I -density topology. In particular, we compare these topologies with respect to inclusion and we look for conditions under which these topologies are identical.

Category theorems concerning Z-density continuous functions

K. Ciesielski, L. Larson (1991)

Fundamenta Mathematicae

Similarity:

The ℑ-density topology T on ℝ is a refinement of the natural topology. It is a category analogue of the density topology [9, 10]. This paper is concerned with ℑ-density continuous functions, i.e., the real functions that are continuous when the ℑ-densitytopology is used on the domain and the range. It is shown that the family C of ordinary continuous functions f: [0,1]→ℝ which have at least one point of ℑ-density continuity is a first category subset of C([0,1])= f: [0,1]→ℝ: f is continuous...

Mean value densities for temperatures

N. Suzuki, N. A. Watson (2003)

Colloquium Mathematicae

Similarity:

A positive measurable function K on a domain D in n + 1 is called a mean value density for temperatures if u ( 0 , 0 ) = D K ( x , t ) u ( x , t ) d x d t for all temperatures u on D̅. We construct such a density for some domains. The existence of a bounded density and a density which is bounded away from zero on D is also discussed.

Construction of an Uncountable Difference between Φ(B) and Φ f ( B )

Josh Campbell, David Swanson (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We construct a set B and homeomorphism f where f and f - 1 have property N such that the symmetric difference between the sets of density points and of f-density points of B is uncountable.