Displaying similar documents to “Classification of nonoscillatory solutions of higher order neutral type difference equations”

Oscillatory and asymptotic behaviour of perturbed quasilinear second order difference equations

Ethiraju Thandapani, L. Ramuppillai (1998)

Archivum Mathematicum

Similarity:

This paper deals with oscillatory and asymptotic behaviour of solutions of second order quasilinear difference equation of the form Δ ( a n - 1 | Δ y n - 1 | α - 1 Δ y n - 1 ) + F ( n , y n ) = G ( n , y n , Δ y n ) , n N ( n 0 ) ( E ) where α > 0 . Some sufficient conditions for all solutions of (E) to be oscillatory are obtained. Asymptotic behaviour of nonoscillatory solutions of (E) are also considered.

Non-oscillation of second order linear self-adjoint nonhomogeneous difference equations

N. Parhi (2011)

Mathematica Bohemica

Similarity:

In the paper, conditions are obtained, in terms of coefficient functions, which are necessary as well as sufficient for non-oscillation/oscillation of all solutions of self-adjoint linear homogeneous equations of the form Δ ( p n - 1 Δ y n - 1 ) + q y n = 0 , n 1 , where q is a constant. Sufficient conditions, in terms of coefficient functions, are obtained for non-oscillation of all solutions of nonlinear non-homogeneous equations of the type Δ ( p n - 1 Δ y n - 1 ) + q n g ( y n ) = f n - 1 , n 1 , where, unlike earlier works, f n 0 or 0 (but ¬ 0 ) for large n . Further, these results are...

Oscillatory and nonoscillatory behaviour of solutions of difference equations of the third order

N. Parhi, Anita Panda (2008)

Mathematica Bohemica

Similarity:

In this paper, sufficient conditions are obtained for oscillation of all solutions of third order difference equations of the form y n + 3 + r n y n + 2 + q n y n + 1 + p n y n = 0 , n 0 . These results are generalization of the results concerning difference equations with constant coefficients y n + 3 + r y n + 2 + q y n + 1 + p y n = 0 , n 0 . Oscillation, nonoscillation and disconjugacy of a certain class of linear third order difference equations are discussed with help of a class of linear second order difference equations.