Some Open Problems in Ergodic Theory
Donald S. Ornstein (1975)
Publications mathématiques et informatique de Rennes
Similarity:
Donald S. Ornstein (1975)
Publications mathématiques et informatique de Rennes
Similarity:
A. Al-Hussaini (1974)
Annales Polonici Mathematici
Similarity:
Nishishiraho, Toshihiko (1998)
Journal of Convex Analysis
Similarity:
Zbigniew S. Kowalski (1984)
Colloquium Mathematicae
Similarity:
Janusz Woś (1987)
Colloquium Mathematicae
Similarity:
Ryotaro Sato (1995)
Studia Mathematica
Similarity:
Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average converges almost everywhere to a function f* in , where (pq) and are assumed to be in the set . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized...
Roland Zweimüller (2004)
Colloquium Mathematicae
Similarity:
We present a very quick and easy proof of the classical Stepanov-Hopf ratio ergodic theorem, deriving it from Birkhoff's ergodic theorem by a simple inducing argument.
Paweł Głowacki (1981)
Studia Mathematica
Similarity:
Idris Assani, Zoltán Buczolich, Daniel R. Mauldin (2004)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Teresa Bermúdez, Manuel González, Mostafa Mbekhta (2000)
Studia Mathematica
Similarity:
We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.