Some Open Problems in Ergodic Theory
Donald S. Ornstein (1975)
Publications mathématiques et informatique de Rennes
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Donald S. Ornstein (1975)
Publications mathématiques et informatique de Rennes
Similarity:
A. Al-Hussaini (1974)
Annales Polonici Mathematici
Similarity:
Nishishiraho, Toshihiko (1998)
Journal of Convex Analysis
Similarity:
Zbigniew S. Kowalski (1984)
Colloquium Mathematicae
Similarity:
Janusz Woś (1987)
Colloquium Mathematicae
Similarity:
Ryotaro Sato (1995)
Studia Mathematica
Similarity:
Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average converges almost everywhere to a function f* in , where (pq) and are assumed to be in the set . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized...
Roland Zweimüller (2004)
Colloquium Mathematicae
Similarity:
We present a very quick and easy proof of the classical Stepanov-Hopf ratio ergodic theorem, deriving it from Birkhoff's ergodic theorem by a simple inducing argument.
Paweł Głowacki (1981)
Studia Mathematica
Similarity:
Idris Assani, Zoltán Buczolich, Daniel R. Mauldin (2004)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity: