Derivations of quotients of von Neumann algebras
Ringrose, J. R.
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Ringrose, J. R.
Similarity:
S. Sakai (1971)
Bulletin de la Société Mathématique de France
Similarity:
V. Shul'Man (1994)
Studia Mathematica
Similarity:
The aim of this paper is to prove that derivations of a C*-algebra A can be characterized in the space of all linear continuous operators T : A → A by the conditions T(1) = 0, T(L∩R) ⊂ L + R for any closed left ideal L and right ideal R. As a corollary we get an extension of the result of Kadison [5] on local derivations in W*-algebras. Stronger results of this kind are proved under some additional conditions on the cohomologies of A.
Martin Mathieu (1992)
Publicacions Matemàtiques
Similarity:
This article summarizes a series of lectures delivered at the Mathematics Department of the University of Leipzig, Germany, in April 1991, which were to overview techniques for solving operator equations on C*-algebras connected with methods developed in a Spanish-German research project on "Structure and Applications of C*-Algebras of Quotients" (SACQ). One of the researchers in this project was Professor Pere Menal until his unexpected death this April. To his memory this paper shall...