The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Differentiability for minimizers of anisotropic integrals”

Continuous functions between Isbell-Mrówka spaces

Salvador García-Ferreira (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let Ψ ( Σ ) be the Isbell-Mr’owka space associated to the M A D -family Σ . We show that if G is a countable subgroup of the group 𝐒 ( ω ) of all permutations of ω , then there is a M A D -family Σ such that every f G can be extended to an autohomeomorphism of Ψ ( Σ ) . For a M A D -family Σ , we set I n v ( Σ ) = { f 𝐒 ( ω ) : f [ A ] Σ for all A Σ } . It is shown that for every f 𝐒 ( ω ) there is a M A D -family Σ such that f I n v ( Σ ) . As a consequence of this result we have that there is a M A D -family Σ such that n + A Σ whenever A Σ and n < ω , where n + A = { n + a : a A } for n < ω . We also notice that there is no M A D -family...

Linear extensions of relations between vector spaces

Árpád Száz (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X and Y be vector spaces over the same field K . Following the terminology of Richard Arens [Pacific J. Math. 11 (1961), 9–23], a relation F of X into Y is called linear if λ F ( x ) F ( λ x ) and F ( x ) + F ( y ) F ( x + y ) for all λ K { 0 } and x , y X . After improving and supplementing some former results on linear relations, we show that a relation Φ of a linearly independent subset E of X into Y can be extended to a linear relation F of X into Y if and only if there exists a linear subspace Z of Y such that Φ ( e ) Y | Z for all e E . Moreover, if...

Methods of analysis of the condition for correct solvability in L p ( ) of general Sturm-Liouville equations

Nina A. Chernyavskaya, Leonid A. Shuster (2014)

Czechoslovak Mathematical Journal

Similarity:

We consider the equation - ( r ( x ) y ' ( x ) ) ' + q ( x ) y ( x ) = f ( x ) , x ( * ) where f L p ( ) , p ( 1 , ) and r > 0 , q 0 , 1 r L 1 loc ( ) , q L 1 loc ( ) , lim | d | x - d x d t r ( t ) · x - d x q ( t ) d t = . In an earlier paper, we obtained a criterion for correct solvability of ( * ) in L p ( ) , p ( 1 , ) . In this criterion, we use values of some auxiliary implicit functions in the coefficients r and q of equation ( * ). Unfortunately, it is usually impossible to compute values of these functions. In the present paper we obtain sharp by order, two-sided estimates (an estimate of a function f ( x ) for x ( a , b ) through a function g ( x ) is sharp by order if c - 1 | g ( x ) | | f ( x ) | c | g ( x ) | , ...