The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Extraresolvability and cardinal arithmetic”

Initially κ -compact spaces for large κ

Stavros Christodoulou (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This work presents some cardinal inequalities in which appears the closed pseudo-character, ψ c , of a space. Using one of them — ψ c ( X ) 2 d ( X ) for T 2 spaces — we improve, from T 3 to T 2 spaces, the well-known result that initially κ -compact T 3 spaces are λ -bounded for all cardinals λ such that 2 λ κ . And then, using an idea of A. Dow, we prove that initially κ -compact T 2 spaces are in fact compact for κ = 2 F ( X ) , 2 s ( X ) , 2 t ( X ) , 2 χ ( X ) , 2 ψ c ( X ) or κ = max { τ + , τ < τ } , where τ > t ( p , X ) for all p X .

On the cardinality of Hausdorff spaces and Pol-Šapirovskii technique

Alejandro Ramírez-Páramo (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we make use of the Pol-Šapirovskii technique to prove three cardinal inequalities. The first two results are due to Fedeli [2] and the third theorem of this paper is a common generalization to: (a) (Arhangel’skii [1]) If X is a T 1 space such that (i) L ( X ) t ( X ) κ , (ii) ψ ( X ) 2 κ , and (iii) for all A [ X ] 2 κ , A ¯ 2 κ , then | X | 2 κ ; and (b) (Fedeli [2]) If X is a T 2 -space then | X | 2 aql ( X ) t ( X ) ψ c ( X ) .