The classification of space groups.
Farkas, J.Z. (2001)
Beiträge zur Algebra und Geometrie
Similarity:
Farkas, J.Z. (2001)
Beiträge zur Algebra und Geometrie
Similarity:
Rubashkin, A.G., Filippov, K.A. (2005)
Sibirskij Matematicheskij Zhurnal
Similarity:
Makarenko, N.Yu. (2000)
Sibirskij Matematicheskij Zhurnal
Similarity:
Tyutyanov, V.N. (2000)
Siberian Mathematical Journal
Similarity:
Khisamiev, N.G. (2009)
Sibirskij Matematicheskij Zhurnal
Similarity:
Sozutov, A.I. (2000)
Siberian Mathematical Journal
Similarity:
Russo, Francesco (2009)
Acta Universitatis Apulensis. Mathematics - Informatics
Similarity:
K. Spallek (1991)
Annales Polonici Mathematici
Similarity:
A differentiable group is a group in the category of (reduced and nonreduced) differentiable spaces. Special cases are the rationals ℚ, Lie groups, formal groups over ℝ or ℂ; in general there is some mixture of those types, the general structure, however, is not yet completely determined. The following gives as a corollary a first essential answer. It is shown, more generally,that a locally compact topological transformation group, operating effectively on a differentiable space X (which...
Darafsheh, Mohammad Reza, Sadrudini, Abdollah (2008)
Sibirskij Matematicheskij Zhurnal
Similarity:
Iranzo, M.J., Pérez-Monasor, F., Medina, J. (2001)
Sibirskij Matematicheskij Zhurnal
Similarity: