The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Point-set domatic numbers of graphs”

Location-domatic number of a graph

Bohdan Zelinka (1998)

Mathematica Bohemica

Similarity:

A subset D of the vertex set V ( G ) of a graph G is called locating-dominating, if for each x V ( G ) - D there exists a vertex y D adjacent to x and for any two distinct vertices x 1 , x 2 of V ( G ) - D the intersections of D with the neighbourhoods of x 1 and x 2 are distinct. The maximum number of classes of a partition of V ( G ) whose classes are locating-dominating sets in G is called the location-domatic number of G . Its basic properties are studied.

Stratidistance in stratified graphs

Gary Chartrand, Heather Gavlas, Michael A. Henning, Reza Rashidi (1997)

Mathematica Bohemica

Similarity:

A graph G is a stratified graph if its vertex set is partitioned into classes (each of which is a stratum or a color class). A stratified graph with k strata is k -stratified. If G is a connected k -stratified graph with strata S i ( 1 i k ) where the vertices of S i are colored X i ( 1 i k ) , then the X i -proximity ρ X i ( v ) of a vertex v of G is the distance between v and a vertex of S i closest to v . The strati-eccentricity s e ( v ) of v is max { ρ X i ( v ) 1 i k } . The minimum strati-eccentricity over all vertices...

Exact 2 -step domination in graphs

Gary Chartrand, Frank Harary, Moazzem Hossain, Kelly Schultz (1995)

Mathematica Bohemica

Similarity:

For a vertex v in a graph G , the set N 2 ( v ) consists of those vertices of G whose distance from v is 2. If a graph G contains a set S of vertices such that the sets N 2 ( v ) , v S , form a partition of V ( G ) , then G is called a 2 -step domination graph. We describe 2 -step domination graphs possessing some prescribed property. In addition, all 2 -step domination paths and cycles are determined.