Displaying similar documents to “Some properties of Lorenzen ideal systems”

Annihilators in normal autometrized algebras

Ivan Chajda, Jiří Rachůnek (2001)

Czechoslovak Mathematical Journal

Similarity:

The concepts of an annihilator and a relative annihilator in an autometrized l -algebra are introduced. It is shown that every relative annihilator in a normal autometrized l -algebra 𝒜 is an ideal of 𝒜 and every principal ideal of 𝒜 is an annihilator of 𝒜 . The set of all annihilators of 𝒜 forms a complete lattice. The concept of an I -polar is introduced for every ideal I of 𝒜 . The set of all I -polars is a complete lattice which becomes a two-element chain provided I is prime. The I -polars...

The ideal (a) is not G δ generated

Marta Frankowska, Andrzej Nowik (2011)

Colloquium Mathematicae

Similarity:

We prove that the ideal (a) defined by the density topology is not G δ generated. This answers a question of Z. Grande and E. Strońska.

A characterization of the meager ideal

Piotr Zakrzewski (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We give a classical proof of the theorem stating that the σ -ideal of meager sets is the unique σ -ideal on a Polish group, generated by closed sets which is invariant under translations and ergodic.

On spaces with the ideal convergence property

Jakub Jasinski, Ireneusz Recław (2008)

Colloquium Mathematicae

Similarity:

Let I ⊆ P(ω) be an ideal. We continue our investigation of the class of spaces with the I-ideal convergence property, denoted (I). We show that if I is an analytic, non-countably generated P-ideal then (I) ⊆ s₀. If in addition I is non-pathological and not isomorphic to I b , then (I) spaces have measure zero. We also present a characterization of the (I) spaces using clopen covers.