Displaying similar documents to “Complete 0 -bounded groups need not be -factorizable”

The Lindelöf property and pseudo- 1 -compactness in spaces and topological groups

Constancio Hernández, Mihail G. Tkachenko (2008)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce and study, following Z. Frol’ık, the class ( 𝒫 ) of regular P -spaces X such that the product X × Y is pseudo- 1 -compact, for every regular pseudo- 1 -compact P -space Y . We show that every pseudo- 1 -compact space which is locally ( 𝒫 ) is in ( 𝒫 ) and that every regular Lindelöf P -space belongs to ( 𝒫 ) . It is also proved that all pseudo- 1 -compact P -groups are in ( 𝒫 ) . The problem of characterization of subgroups of -factorizable (equivalently, pseudo- 1 -compact) P -groups is considered as well. We...

Homomorphic images of -factorizable groups

Mihail G. Tkachenko (2006)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is well known that every -factorizable group is ω -narrow, but not vice versa. One of the main problems regarding -factorizable groups is whether this class of groups is closed under taking continuous homomorphic images or, alternatively, whether every ω -narrow group is a continuous homomorphic image of an -factorizable group. Here we show that the second hypothesis is definitely false. This result follows from the theorem stating that if a continuous homomorphic image of an -factorizable...