Addendum to the paper "On isomorphisms of anisotropic Sobolev spaces with "classical Banach spaces" and a Sobolev type embedding theorem"
A. Pełczyński, K. Senator (1986)
Studia Mathematica
Similarity:
A. Pełczyński, K. Senator (1986)
Studia Mathematica
Similarity:
Ershov, Yu.L., Kutateladze, S.S. (2009)
Sibirskij Matematicheskij Zhurnal
Similarity:
Petteri Harjulehto, Peter Hästö, Mika Koskenoja, Susanna Varonen (2005)
Banach Center Publications
Similarity:
In a recent article the authors showed that it is possible to define a Sobolev capacity in variable exponent Sobolev space. However, this set function was shown to be a Choquet capacity only under certain assumptions on the variable exponent. In this article we relax these assumptions.
Andrea Cianchi, Nicola Fusco, F. Maggi, A. Pratelli (2009)
Journal of the European Mathematical Society
Similarity:
Piotr Hajlasz, Juha Kinnunen (1998)
Revista Matemática Iberoamericana
Similarity:
We prove that every Sobolev function defined on a metric space coincides with a Hölder continuous function outside a set of small Hausdorff content or capacity. Moreover, the Hölder continuous function can be chosen so that it approximates the given function in the Sobolev norm. This is a generalization of a result of Malý [Ma1] to the Sobolev spaces on metric spaces [H1].
Kutateladze, S.S. (2001)
Vladikavkazskiĭ Matematicheskiĭ Zhurnal
Similarity:
Francesca Lascialfari, David Pardo (2002)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
A. Benedek, R. Panzone (1990)
Colloquium Mathematicae
Similarity:
David Edmunds, Jiří Rákosník (2000)
Studia Mathematica
Similarity:
V. M. Tikhomirov (1989)
Banach Center Publications
Similarity:
Ershov, Yu.L., Kutateladze, S.S., Tajmanov, I.A. (2007)
Sibirskij Matematicheskij Zhurnal
Similarity:
Bogdan Bojarski, Piotr Hajłasz (1993)
Studia Mathematica
Similarity:
We get a class of pointwise inequalities for Sobolev functions. As a corollary we obtain a short proof of Michael-Ziemer’s theorem which states that Sobolev functions can be approximated by functions both in norm and capacity.
P. Szeptycki (1956)
Studia Mathematica
Similarity:
Crăciunaş, Petru Teodor (1996)
General Mathematics
Similarity: