Displaying similar documents to “Radio antipodal colorings of graphs”

Set vertex colorings and joins of graphs

Futaba Okamoto, Craig W. Rasmussen, Ping Zhang (2009)

Czechoslovak Mathematical Journal

Similarity:

For a nontrivial connected graph G , let c V ( G ) be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G , the neighborhood color set NC ( v ) is the set of colors of the neighbors of v . The coloring c is called a set coloring if NC ( u ) NC ( v ) for every pair u , v of adjacent vertices of G . The minimum number of colors required of such a coloring is called the set chromatic number χ s ( G ) . A study is made of the set chromatic number of the join G + H of two graphs G and H . Sharp lower...

3-consecutive c-colorings of graphs

Csilla Bujtás, E. Sampathkumar, Zsolt Tuza, M.S. Subramanya, Charles Dominic (2010)

Discussiones Mathematicae Graph Theory

Similarity:

A 3-consecutive C-coloring of a graph G = (V,E) is a mapping φ:V → ℕ such that every path on three vertices has at most two colors. We prove general estimates on the maximum number ( χ ̅ ) 3 C C ( G ) of colors in a 3-consecutive C-coloring of G, and characterize the structure of connected graphs with ( χ ̅ ) 3 C C ( G ) k for k = 3 and k = 4.

Rainbow connection in graphs

Gary Chartrand, Garry L. Johns, Kathleen A. McKeon, Ping Zhang (2008)

Mathematica Bohemica

Similarity:

Let G be a nontrivial connected graph on which is defined a coloring c E ( G ) { 1 , 2 , ... , k } , k , of the edges of G , where adjacent edges may be colored the same. A path P in G is a rainbow path if no two edges of P are colored the same. The graph G is rainbow-connected if G contains a rainbow u - v path for every two vertices u and v of G . The minimum k for which there exists such a k -edge coloring is the rainbow connection number r c ( G ) of G . If for every pair u , v of distinct vertices, G contains a rainbow u - v geodesic,...

Radio k-colorings of paths

Gary Chartrand, Ladislav Nebeský, Ping Zhang (2004)

Discussiones Mathematicae Graph Theory

Similarity:

For a connected graph G of diameter d and an integer k with 1 ≤ k ≤ d, a radio k-coloring of G is an assignment c of colors (positive integers) to the vertices of G such that d(u,v) + |c(u)- c(v)| ≥ 1 + k for every two distinct vertices u and v of G, where d(u,v) is the distance between u and v. The value rcₖ(c) of a radio k-coloring c of G is the maximum color assigned to a vertex of G. The radio k-chromatic number rcₖ(G) of G is the minimum value of rcₖ(c) taken over all radio k-colorings...

Hajós' theorem for list colorings of hypergraphs

Claude Benzaken, Sylvain Gravier, Riste Skrekovski (2003)

Discussiones Mathematicae Graph Theory

Similarity:

A well-known theorem of Hajós claims that every graph with chromathic number greater than k can be constructed from disjoint copies of the complete graph K k + 1 by repeated application of three simple operations. This classical result has been extended in 1978 to colorings of hypergraphs by C. Benzaken and in 1996 to list-colorings of graphs by S. Gravier. In this note, we capture both variations to extend Hajós’ theorem to list-colorings of hypergraphs.

Defining sets in (proper) vertex colorings of the Cartesian product of a cycle with a complete graph

D. Ali Mojdeh (2006)

Discussiones Mathematicae Graph Theory

Similarity:

In a given graph G = (V,E), a set of vertices S with an assignment of colors to them is said to be a defining set of the vertex coloring of G, if there exists a unique extension of the colors of S to a c ≥ χ(G) coloring of the vertices of G. A defining set with minimum cardinality is called a minimum defining set and its cardinality is the defining number, denoted by d(G,c). The d(G = Cₘ × Kₙ, χ(G)) has been studied. In this note we show that the exact value of defining number d(G =...

Upper bounds on the b-chromatic number and results for restricted graph classes

Mais Alkhateeb, Anja Kohl (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A b-coloring of a graph G by k colors is a proper vertex coloring such that every color class contains a color-dominating vertex, that is, a vertex having neighbors in all other k-1 color classes. The b-chromatic number χ b ( G ) is the maximum integer k for which G has a b-coloring by k colors. Moreover, the graph G is called b-continuous if G admits a b-coloring by k colors for all k satisfying χ ( G ) k χ b ( G ) . In this paper, we establish four general upper bounds on χ b ( G ) . We present results on the b-chromatic...