Image sampling with quasicrystals.
Grundland, Mark, Patera, Jirí, Masáková, Zuzana, Dodgson, Neil A. (2009)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Grundland, Mark, Patera, Jirí, Masáková, Zuzana, Dodgson, Neil A. (2009)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Ahmed I. Zayed (1995)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Similarity:
Zuzana Prášková (1990)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
B.F. Arnold (1986)
Metrika
Similarity:
B.F. Arnold (1985)
Metrika
Similarity:
Huang, Nina N., Strichartz, Robert S. (2001)
Experimental Mathematics
Similarity:
Isaac Pesenson (2001)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Similarity:
Jerri, A.J. (1985)
International Journal of Mathematics and Mathematical Sciences
Similarity:
R. Göb ([unknown])
Metrika
Similarity:
Wojciech Niemiro, Jacek Wesołowski (2001)
Applicationes Mathematicae
Similarity:
Two-stage sampling schemes arise in survey sampling, especially in situations when the complete update of the frame is difficult. In this paper we solve the problem of fixed precision optimal allocation in two special two-stage sampling schemes. The solution is based on reducing the original question to an eigenvalue problem and then using the Perron-Frobenius theorem.