Displaying similar documents to “Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type”

On the composition of the integral and derivative operators of functional order

Silvia I. Hartzstein, Beatriz E. Viviani (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The Integral, I φ , and Derivative, D φ , operators of order φ , with φ a function of positive lower type and upper type less than 1 , were defined in [HV2] in the setting of spaces of homogeneous-type. These definitions generalize those of the fractional integral and derivative operators of order α , where φ ( t ) = t α , given in [GSV]. In this work we show that the composition T φ = D φ I φ is a singular integral operator. This result in addition with the results obtained in [HV2] of boundedness of I φ and D φ or the...

Dichotomies for 𝐂 0 ( X ) and 𝐂 b ( X ) spaces

Szymon Głąb, Filip Strobin (2013)

Czechoslovak Mathematical Journal

Similarity:

Jachymski showed that the set ( x , y ) 𝐜 0 × 𝐜 0 : i = 1 n α ( i ) x ( i ) y ( i ) n = 1 is bounded is either a meager subset of 𝐜 0 × 𝐜 0 or is equal to 𝐜 0 × 𝐜 0 . In the paper we generalize this result by considering more general spaces than 𝐜 0 , namely 𝐂 0 ( X ) , the space of all continuous functions which vanish at infinity, and 𝐂 b ( X ) , the space of all continuous bounded functions. Moreover, we replace the meagerness by σ -porosity.