The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Induced-paired domatic numbers of graphs”

Antidomatic number of a graph

Bohdan Zelinka (1997)

Archivum Mathematicum

Similarity:

A subset D of the vertex set V ( G ) of a graph G is called dominating in G , if for each x V ( G ) - D there exists y D adjacent to x . An antidomatic partition of G is a partition of V ( G ) , none of whose classes is a dominating set in G . The minimum number of classes of an antidomatic partition of G is the number d ¯ ( G ) of G . Its properties are studied.

A note on the domination number of a graph and its complement

Dănuţ Marcu (2001)

Mathematica Bohemica

Similarity:

If G is a simple graph of size n without isolated vertices and G ¯ is its complement, we show that the domination numbers of G and G ¯ satisfy γ ( G ) + γ ( G ¯ ) n - δ + 2 if γ ( G ) > 3 , δ + 3 if γ ( G ¯ ) > 3 , where δ is the minimum degree of vertices in G .

Domination in partitioned graphs

Zsolt Tuza, Preben Dahl Vestergaard (2002)

Discussiones Mathematicae Graph Theory

Similarity:

Let V₁, V₂ be a partition of the vertex set in a graph G, and let γ i denote the least number of vertices needed in G to dominate V i . We prove that γ₁+γ₂ ≤ [4/5]|V(G)| for any graph without isolated vertices or edges, and that equality occurs precisely if G consists of disjoint 5-paths and edges between their centers. We also give upper and lower bounds on γ₁+γ₂ for graphs with minimum valency δ, and conjecture that γ₁+γ₂ ≤ [4/(δ+3)]|V(G)| for δ ≤ 5. As δ gets large, however, the largest...