Probabilistic analysis of singularities for the 3-D Navier-Stokes equations
Flandoli, Franco, Romito, Marco
Similarity:
Flandoli, Franco, Romito, Marco
Similarity:
Yau, Horng-Tzer (1998)
Documenta Mathematica
Similarity:
Patrick Penel, Milan Pokorný (2004)
Applications of Mathematics
Similarity:
We study the nonstationary Navier-Stokes equations in the entire three-dimensional space and give some criteria on certain components of gradient of the velocity which ensure its global-in-time smoothness.
Piotr Kacprzyk (2010)
Annales Polonici Mathematici
Similarity:
Global existence of regular special solutions to the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe has already been shown. In this paper we prove the existence of the global attractor for the Navier-Stokes equations and convergence of the solution to a stationary solution.
Zubelevich, Oleg (2005)
Lobachevskii Journal of Mathematics
Similarity:
M. Pulvirenti (2008)
Bollettino dell'Unione Matematica Italiana
Similarity:
This talk, based on a research in collaboration with E. Caglioti and F.Rousset, deals with a modified version of the two-dimensional Navier-Stokes equation wich preserves energy and momentum of inertia. Such a new equation is motivated by the occurrence of different dissipation time scales. It is also related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.
R. H. Dyer, D. E. Edmunds (1971)
Colloquium Mathematicae
Similarity:
Michael Wiegner (2003)
Banach Center Publications
Similarity: