Displaying similar documents to “On heredity of strongly proximal actions”

Strong continuity of invariant probability charges

Harald Luschgy, Sławomir Solecki (2004)

Colloquium Mathematicae

Similarity:

Consider a semigroup action on a set. We derive conditions, in terms of the induced action of the semigroup on {0,1}-valued probability charges, which ensure that all invariant probability charges are strongly continuous.

On a vector-valued local ergodic theorem in L

Ryotaro Sato (1999)

Studia Mathematica

Similarity:

Let T = T ( u ) : u d + be a strongly continuous d-dimensional semigroup of linear contractions on L 1 ( ( Ω , Σ , μ ) ; X ) , where (Ω,Σ,μ) is a σ-finite measure space and X is a reflexive Banach space. Since L 1 ( ( Ω , Σ , μ ) ; X ) * = L ( ( Ω , Σ , μ ) ; X * ) , the adjoint semigroup T * = T * ( u ) : u d + becomes a weak*-continuous semigroup of linear contractions acting on L ( ( Ω , Σ , μ ) ; X * ) . In this paper the local ergodic theorem is studied for the adjoint semigroup T*. Assuming that each T(u), u d + , has a contraction majorant P(u) defined on L 1 ( ( Ω , Σ , μ ) ; ) , that is, P(u) is a positive linear contraction on L 1 ( ( Ω , Σ , μ ) ; ) such that T ( u ) f ( ω ) P ( u ) f ( · ) ( ω ) almost...