The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Non-existence of some canonical constructions on connections”

Bundle functors with the point property which admit prolongation of connections

W. M. Mikulski (2010)

Annales Polonici Mathematici

Similarity:

Let F:ℳ f →ℱℳ be a bundle functor with the point property F(pt) = pt, where pt is a one-point manifold. We prove that F is product preserving if and only if for any m and n there is an m , n -canonical construction D of general connections D(Γ) on Fp:FY → FM from general connections Γ on fibred manifolds p:Y → M.

A construction of a connection on G Y Y from a connection on Y M by means of classical linear connections on M and Y

Włodzimierz M. Mikulski (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a bundle functor of order ( r , s , q ) , s r q , on the category m , n of ( m , n ) -dimensional fibered manifolds and local fibered diffeomorphisms. Given a general connection Γ on an m , n -object Y M we construct a general connection 𝒢 ( Γ , λ , Λ ) on G Y Y be means of an auxiliary q -th order linear connection λ on M and an s -th order linear connection Λ on Y . Then we construct a general connection 𝒢 ( Γ , 1 , 2 ) on G Y Y by means of auxiliary classical linear connections 1 on M and 2 on Y . In the case G = J 1 we determine all general connections...

The natural operators lifting horizontal 1-forms to some vector bundle functors on fibered manifolds

J. Kurek, W. M. Mikulski (2003)

Colloquium Mathematicae

Similarity:

Let F:ℱ ℳ → ℬ be a vector bundle functor. First we classify all natural operators T p r o j | m , n T ( 0 , 0 ) ( F | m , n ) * transforming projectable vector fields on Y to functions on the dual bundle (FY)* for any m , n -object Y. Next, under some assumption on F we study natural operators T * h o r | m , n T * ( F | m , n ) * lifting horizontal 1-forms on Y to 1-forms on (FY)* for any Y as above. As an application we classify natural operators T * h o r | m , n T * ( F | m , n ) * for some vector bundle functors F on fibered manifolds.

Gauge natural constructions on higher order principal prolongations

Miroslav Doupovec, Włodzimierz M. Mikulski (2007)

Annales Polonici Mathematici

Similarity:

Let W m r P be a principal prolongation of a principal bundle P → M. We classify all gauge natural operators transforming principal connections on P → M and rth order linear connections on M into general connections on W m r P M . We also describe all geometric constructions of classical linear connections on W m r P from principal connections on P → M and rth order linear connections on M.

Fiber product preserving bundle functors as modified vertical Weil functors

Włodzimierz M. Mikulski (2015)

Czechoslovak Mathematical Journal

Similarity:

We introduce the concept of modified vertical Weil functors on the category m of fibred manifolds with m -dimensional bases and their fibred maps with embeddings as base maps. Then we describe all fiber product preserving bundle functors on m in terms of modified vertical Weil functors. The construction of modified vertical Weil functors is an (almost direct) generalization of the usual vertical Weil functor. Namely, in the construction of the usual vertical Weil functors, we replace...

Linear liftings of affinors to Weil bundles

Jacek Dębecki (2003)

Colloquium Mathematicae

Similarity:

We give a classification of all linear natural operators transforming affinors on each n-dimensional manifold M into affinors on T A M , where T A is the product preserving bundle functor given by a Weil algebra A, under the condition that n ≥ 2.

The natural operators lifting vector fields to generalized higher order tangent bundles

Włodzimierz M. Mikulski (2000)

Archivum Mathematicum

Similarity:

For natural numbers r and n and a real number a we construct a natural vector bundle T ( r ) , a over n -manifolds such that T ( r ) , 0 is the (classical) vector tangent bundle T ( r ) of order r . For integers r 1 and n 3 and a real number a < 0 we classify all natural operators T | M n T T ( r ) , a lifting vector fields from n -manifolds to T ( r ) , a .