Displaying similar documents to “Lattices and semilattices having an antitone involution in every upper interval”

Congruences on pseudocomplemented semilattices

Zuzana Heleyová (2000)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

It is known that congruence lattices of pseudocomplemented semilattices are pseudocomplemented [4]. Many interesting properties of congruences on pseudocomplemented semilattices were described by Sankappanavar in [4], [5], [6]. Except for other results he described congruence distributive pseudocomplemented semilattices [6] and he characterized pseudocomplemented semilattices whose congruence lattices are Stone, i.e. belong to the variety B₁ [5]. In this paper we give a partial solution...

Subdirectly irreducible sectionally pseudocomplemented semilattices

Radomír Halaš, Jan Kühr (2007)

Czechoslovak Mathematical Journal

Similarity:

Sectionally pseudocomplemented semilattices are an extension of relatively pseudocomplemented semilattices—they are meet-semilattices with a greatest element such that every section, i.e., every principal filter, is a pseudocomplemented semilattice. In the paper, we give a simple equational characterization of sectionally pseudocomplemented semilattices and then investigate mainly their congruence kernels which leads to a characterization of subdirectly irreducible sectionally pseudocomplemented...

Congruence classes in Brouwerian semilattices

Ivan Chajda, Helmut Länger (2001)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Brouwerian semilattices are meet-semilattices with 1 in which every element a has a relative pseudocomplement with respect to every element b, i. e. a greatest element c with a∧c ≤ b. Properties of classes of reflexive and compatible binary relations, especially of congruences of such algebras are described and an abstract characterization of congruence classes via ideals is obtained.