The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Aull-paracompactness and strong star-normality of subspaces in topological spaces”

Relative normality and product spaces

Takao Hoshina, Ryoken Sokei (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Arhangel’skiĭ defines in [Topology Appl. 70 (1996), 87–99], as one of various notions on relative topological properties, strong normality of A in X for a subspace A of a topological space X , and shows that this is equivalent to normality of X A , where X A denotes the space obtained from X by making each point of X A isolated. In this paper we investigate for a space X , its subspace A and a space Y the normality of the product X A × Y in connection with the normality of ( X × Y ) ( A × Y ) . The cases for paracompactness,...

Some relative properties on normality and paracompactness, and their absolute embeddings

Shinji Kawaguchi, Ryoken Sokei (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Paracompactness ( = 2 -paracompactness) and normality of a subspace Y in a space X defined by Arhangel’skii and Genedi [4] are fundamental in the study of relative topological properties ([2], [3]). These notions have been investigated by primary using of the notion of weak C - or weak P -embeddings, which are extension properties of functions defined in [2] or [18]. In fact, Bella and Yaschenko [8] characterized Tychonoff spaces which are normal in every larger Tychonoff space, and this result...