The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Property ( a ) and dominating families”

Closed discrete subsets of separable spaces and relative versions of normality, countable paracompactness and property ( a )

Samuel Gomes da Silva (2011)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we show that a separable space cannot include closed discrete subsets which have the cardinality of the continuum and satisfy relative versions of any of the following topological properties: normality, countable paracompactness and property ( a ) . It follows that it is consistent that closed discrete subsets of a separable space X which are also relatively normal (relatively countably paracompact, relatively ( a ) ) in X are necessarily countable. There are, however, consistent...

Almost disjoint families and property (a)

Paul Szeptycki, Jerry Vaughan (1998)

Fundamenta Mathematicae

Similarity:

We consider the question: when does a Ψ-space satisfy property (a)? We show that if | A | < p then the Ψ-space Ψ(A) satisfies property (a), but in some Cohen models the negation of CH holds and every uncountable Ψ-space fails to satisfy property (a). We also show that in a model of Fleissner and Miller there exists a Ψ-space of cardinality p which has property (a). We extend a theorem of Matveev relating the existence of certain closed discrete subsets with the failure of property (a). ...

Spaces with large star cardinal number

Yan-Kui Song (2012)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we prove the following statements: (1) For any cardinal κ , there exists a Tychonoff star-Lindelöf space X such that a ( X ) κ . (2) There is a Tychonoff discretely star-Lindelöf space X such that a a ( X ) does not exist. (3) For any cardinal κ , there exists a Tychonoff pseudocompact σ -starcompact space X such that st - l ( X ) κ .