Displaying similar documents to “On the number of Russell's socks or $2+2+2+\dots=\text{?}$”

Strong compactness, measurability, and the class of supercompact cardinals

Arthur W. Apter (2001)

Fundamenta Mathematicae

Similarity:

We prove two theorems concerning strong compactness, measurability, and the class of supercompact cardinals. We begin by showing, relative to the appropriate hypotheses, that it is consistent non-trivially for every supercompact cardinal to be the limit of (non-supercompact) strongly compact cardinals. We then show, relative to the existence of a non-trivial (proper or improper) class of supercompact cardinals, that it is possible to have a model with the same class of supercompact cardinals...

Some Remarks on Tall Cardinals and Failures of GCH

Arthur W. Apter (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We investigate two global GCH patterns which are consistent with the existence of a tall cardinal, and also present some related open questions.

Some applications of Sargsyan's equiconsistency method

Arthur W. Apter (2012)

Fundamenta Mathematicae

Similarity:

We apply techniques due to Sargsyan to reduce the consistency strength of the assumptions used to establish an indestructibility theorem for supercompactness. We then show how these and additional techniques due to Sargsyan may be employed to establish an equiconsistency for a related indestructibility theorem for strongness.